| Faculty | Faculty of Science (FPR) | ||||
|---|---|---|---|---|---|
| Study programme | Artificial Intelligence and Data Science (N0619P140001) | ||||
| Branch of study / Specialization | Artificial Intelligence and Data Science (N0619P140001/0 - 2025) | ||||
| Level of acquired qualification | Postgraduate Master | ||||
| Form of study | Full-time | ||||
| Standard length of study | 2 years | ||||
| Number of ECTS credits | 120 | ||||
| Qualification awarded | Master (7) | ||||
| Access to further studies | Doctoral study programme | ||||
| Type of completion | State Final Exam | ||||
| Study and Examination Code | URL | ||||
| Faculty coordinator for international students | 
 | ||||
| Key learning outcomes | Graduates of the cross-border joint study programme MAID will acquire knowledge, skills and competences in the specialised field of applied informatics ? artificial intelligence (machine learning, analysis and prediction methods) and data science (data mining, data analysis or big data processing). | ||||
| Specific admission requirements | unspecified | ||||
| Specific provisions for recognition of prior learning | unspecified | ||||
| Qualification requirements and regulations | unspecified | ||||
| Profile of the programme | unspecified | ||||
| Persistence requirements | unspecified | ||||
| Occupational profiles of graduates with examples | unspecified | ||||
| Branch of study / Specialization guarantor | unspecified | 
| 1. year | 2. year | Undetermined year | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Winter | Summer | Winter | Summer | Winter | Summer | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| Total 60 credits | Total 60 credits | Total 60 credits | ||||||||||||||||||||||||||||||||||||
| Total 120 credits | ||||||||||||||||||||||||||||||||||||||