Faculty | Faculty of Science (FPR) | ||||
---|---|---|---|---|---|
Study programme | Artificial Intelligence and Data Science (N0619P140001) | ||||
Branch of study / Specialization | Artificial Intelligence and Data Science (N0619P140001/0 - 2025) | ||||
Level of acquired qualification | Postgraduate Master | ||||
Form of study | Full-time | ||||
Standard length of study | 2 years | ||||
Number of ECTS credits | 120 | ||||
Qualification awarded | Master (7) | ||||
Access to further studies | Doctoral study programme | ||||
Type of completion | State Final Exam | ||||
Study and Examination Code | URL | ||||
Faculty coordinator for international students |
|
||||
Key learning outcomes | Graduates of the cross-border joint study programme MAID will acquire knowledge, skills and competences in the specialised field of applied informatics ? artificial intelligence (machine learning, analysis and prediction methods) and data science (data mining, data analysis or big data processing). | ||||
Specific admission requirements | unspecified | ||||
Specific provisions for recognition of prior learning | unspecified | ||||
Qualification requirements and regulations | unspecified | ||||
Profile of the programme | unspecified | ||||
Persistence requirements | unspecified | ||||
Occupational profiles of graduates with examples | unspecified | ||||
Branch of study / Specialization guarantor | unspecified |
1. year | 2. year | Undetermined year | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Winter | Summer | Winter | Summer | Winter | Summer | |||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
Total 60 credits | Total 60 credits | Total 60 credits | ||||||||||||||||||||||||||||||||||||
Total 120 credits |