Lecturer(s)


Samková Libuše, RNDr. Ph.D.

Course content

1. ordinary differential equations, the introduction and basic notation 2. the general and particular solution, separation of variables 3. the dependonce of solution on the Cauchy conditions 4. methods of solving 5. linear and exact ODE 6. higherorder ODE 7. the autonomous equations 8. singular points 9. the stability theory 10. partial differential equations 11. the difference equation 12. the economy applications 13. the continuous models 14. the applications in physics

Learning activities and teaching methods

Monologic (reading, lecture, briefing), Dialogic (discussion, interview, brainstorming)

Learning outcomes

The lecture extends the fundamental knowledge of mathematical analysis a differential equatios. The course consists of various applications in many other cases  economy, chemistry, biology. The introduction to the differential geometry and theory of manifolds is mentioned.
Computation ability coming out of the differential equations theory.

Prerequisites

The differential and integral calculus. Bachelor students who have not completed KMA/MA3 yet have to carry out a test on differential equations in the extend corresponding to KMA/MA3.

Assessment methods and criteria

Student performance assessment
The credit task.

Recommended literature


Hartman, P.:. Ordinary Differential Equations, Wiley, New YorkLondonSydney, 1964.

Kalas, J., Pospíšil, Z.:. Spojité modely v biologii, MU Brno, 2001.

Kalas, J., Ráb, M.:. Obyčejné diferenciální rovnice, MU Brno, 1995.

Kufner, A.:. Obyčejné diferenciální rovnice, ZČU Plzeň, 1993.

Ráb, M.:. Metody řešení obyčejných diferenciálních rovnic, MU Brno, 1998.
