Lecturer(s)
|
-
Petrášková Vladimíra, doc. RNDr. Ph.D.
-
Kobera Marek, Mgr. Bc. Ph.D.
|
Course content
|
Topology and metrics in R2, R3. Functions of two and more variables: limit, continuity, partial derivatives, higher order derivatives, directional derivatives, differential, Taylor's theorem. Compound and implicit functions. Local and global extremes, bounded extremes.
|
Learning activities and teaching methods
|
Monologic (reading, lecture, briefing), Work with text (with textbook, with book)
|
Learning outcomes
|
The aim of the course is to acquaint the participant with the basics of differential calculus of several variables.
After completing the course, the participant will be familiar with the basic theory of the differential calculus of several variables.
|
Prerequisites
|
Knowledge of the differential calculus of one variable.
|
Assessment methods and criteria
|
Combined exam
Passing the written test at 50%.
|
Recommended literature
|
-
Děmidovič, B. P. :. Sbírka úloh a cvičení z matematické analýzy, Fragment, 2003.. Praha, SPN, 1965.
-
DOŠLÁ, Z., DOŠLÝ, O. Diferenciální počet funkcí více proměnných. MU v Brně, 1999. ISBN 80-210-2052-0..
-
Internetové zdroje:. //mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/diferencialni_pocet_vice_promennych.pdf.
-
NÝDL, V., KLUFOVÁ, R. Matematika Část 2 - Matematická analýza.
|