Course: Computational technology for mathematicians I

« Back
Course title Computational technology for mathematicians I
Course code KMA/VTM1
Organizational form of instruction Seminary
Level of course Bachelor
Year of study 2
Semester Winter
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory
Form of instruction unspecified
Work placements unspecified
Recommended optional programme components None
Lecturer(s)
  • Hašek Roman, Mgr. Ph.D.
  • Pech Pavel, prof. RNDr. CSc.
Course content
1. Introduction into the mathematical software GeoGebra, the use of its environment.. 2. Dynamic geometry constructions and their presentation. 3. Animated constructions. The use of web space to share materials. 4. Functions. Graph of a function. 5. Equations and inequalities. Systems of equations and inequalities. Symbolic and graphic methods of solving. 6. 3D geometry. 7. Introduction to wxMaxima CAS software. 8. Mathematical modeling. 9. Computational algebra. 10. Automated theorem proving. 11. Solving of complex tasks. 12. Presentation of seminar works. 13. Presentation of seminar works. 14. Presentation of seminar works.

Learning activities and teaching methods
Monologic (reading, lecture, briefing), Dialogic (discussion, interview, brainstorming), Work activities (workshops), Activating (simulations, games, drama)
Learning outcomes
The subject offers a survey of possible utilizations of computers in mathematics. A student is introduced into the use of computers in mathematics through the solving of real-world problems. She mainly uses the CAS (computer algebra system) program wxMaxima and DGS (dynamic geometry system) program GeoGebra.
Student will learn to control primarily the programs GeoGebra and wxMaxima. Through solving of specific problems she will learn possible ways of using these programs in mathematics.
Prerequisites
basic computer skills

Assessment methods and criteria
Student performance assessment, Analysis of student's work activities (technical works), Analysis of creative work (musical, visual, literary)

Active participation on seminars, seminar work.
Recommended literature
  • GeoGebra. http://www.geogebra.org..
  • Günzel, M. a kol.:. Integrace elektronických prostředí pro počítačem podporovanou výuku matematiky/. Jihočeská univerzita v Č. B., 2012. Dostupné z http://home.pf.jcu.cz/~ippvm/archives/category/publikace <http://home.pf.jcu.cz/%7Eippvm/archives/category/publikace>.
  • Hašek, R. Numerical analysis of a planar motion; GeoGebra as a tool of investigation. /North American GeoGebra Journal/ (ISSN: 2162-3856). Miami University, Oxford, OH, USA. Vol. 1, No. 1, 2012. pp. 33 - 36. Dostupné z http://www.ggbmidwest.com.
  • Hašek, R., Petrášková, V. GeoGebra in financial education. /NorthAmerican GeoGebra Journal/, Vol. 2, No. 1, 2013, Miami University,USA, ISSN: 2162-3856, pp. 31-36. Dostupné z http://www.ggbmidwest.com.
  • Hohenwarter, M., Hohenwarter, J. Introduction to GeoGebra, Version 4.2/ Dostupné z http://www.geogebra.org/book/intro-en.pdf.
  • J. Böhm et al.:. The Case for CAS.
  • Návod na tvorbu online "GeoGebra knihy". http://www.geogebra.org/manual/en/The_GeoGebraBook_Editor..
  • Pech, P.:. Klasické vs. počítačové metody při řešení úloh v geometrii <http://www.pf.jcu.cz/stru/katedry/m/knihy/Metody.pdf>/ [online]. Jihočeská univerzita v Českých Budějovicích, České Budějovice, 2005.Dostupné z http://www.pf.jcu.cz/stru/katedry/m/knihy/Metody.pdf.
  • R. Hašek:. Užití Derive ve výuce matematiky.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Education Study plan (Version): Introductory teacher training course in mathematics (3) Category: Pedagogy, teacher training and social care 2 Recommended year of study:2, Recommended semester: Winter
Faculty: Faculty of Education Study plan (Version): Introductory teacher training course in mathematics (3) Category: Pedagogy, teacher training and social care 2 Recommended year of study:2, Recommended semester: Winter