Předmět: Advanced Topics in Euclidean Geometry

» Seznam fakult » FPE » KMA
Název předmětu Advanced Topics in Euclidean Geometry
Kód předmětu KMA/ATEG
Organizační forma výuky Seminář
Úroveň předmětu Bakalářský
Rok studia nespecifikován
Semestr Zimní a letní
Počet ECTS kreditů 3
Vyučovací jazyk angličtina
Statut předmětu Volitelný
Způsob výuky Kontaktní
Studijní praxe Nejedná se o pracovní stáž
Doporučené volitelné součásti programu Není
Dostupnost předmětu Předmět je nabízen přijíždějícím studentům
Vyučující
  • Hašek Roman, Mgr. Ph.D.
Obsah předmětu
1. Euclidean geometry from a historical perspective. Geometry as the field that mediates between the branches of mathematics. 2. Auxiliary constructions for advanced problems on congruency and similarity of triangles. 3. Special lines and points in a triangle. Cevians as a generalization of "classic" lines in a triangle. Motivation for the notion. Examples of "non-classic" cevians, splitter. Exploring of cevians concurrency with GeoGebra. 4. Ceva's theorem. Ratio and product formulations. Generalization for the case of external concurrency. Proofs of direct and converse Ceva's theorems. 5. Applications and generalizations of Ceva's theorem. On special lines and points in a triangle: Euler line. Simpson line. 6. Special families of quadrilaterals and their "standard and non-standard" properties. Direct and converse theorem. Examples and counter-examples. 7. Advanced theorems on inscribed and tangential polygons. Ptolemy's theorem: ways of proof and applications. 8. Exploring the problem "beyond the solution". Multiple solutions and generalizations of the statement. The use of GeoGebra and interplay of change and invariance. 9. Loci. Exploring loci with dynamic geometry software. 10-12. Geometric constructions. Classic geometric constructions. Ways of solutions of construction problems in dynamic geometry environment.

Studijní aktivity a metody výuky
Dialogická (diskuze, rozhovor, brainstorming), E-learning, Skupinová výuka, Blended learning
Výstupy z učení
The subject is taught as a joint subject with Gordon Academic College of Education in Haifa, Israel. The teaching is carried out by the cooperation of teachers Dr. Roman Hasek (University of South Bohemia), Prof. Victor Oxman (Gordon Academic College of Education), Prof. Ilya Sinitsky (Gordon Academic College of Education), in the presence of students from both schools. The Euclidean geometry is much wider and deeper than what is taught in school. It is important to provide a teacher with a view on school geometry from the point of Euclidean geometry as a field of knowledge and to demonstrate the place of Euclidean geometry among other branches of mathematics. During the course, the learners will aware of some advanced theorems on points and lines in triangles and special quadrilaterals and will explore some advanced methods of inquiry in geometry, especially the auxiliary constructions for solving problems, the using of dynamic geometry environment for geometric constructions and the ways of generalization and specialization of theorems of Euclidean geometry. Special attention will be paid to the aspects of invariance as a feature of geometric theorems and practical implications, different solutions of the same problem, types and variety proofs, heuristics and proof. The student will: 1. develop a broad concept of the field of Euclidean geometry 2. expand and deepen the competence in the geometry of triangles and quadrilaterals. 3. learn methods to solve geometric construction problems through exploring the concept of locus. 4. develop strategies for inquiry in geometry with the extensive use of dynamic geometry in combination with appropriate reasoning.
The student will develop a broad concept of the field of Euclidean geometry, expand and deepen the competence in the geometry of triangles and quadrilaterals, learn methods to solve geometric construction problems through exploring the concept of locus, develop strategies for inquiry in geometry with the extensive use of dynamic geometry in combination with appropriate reasoning.
Předpoklady
Nejsou

Hodnoticí metody a kritéria
Ústní zkouška, Analýza výkonů studenta, Seminární práce

Critical reading of the relevant bibliography items, active participation in discussion forums and presentation of problem solutions according to the syllabus Presentation of a research activity on generalizations of the problem/theorem in Euclidean geometry Final exam
Doporučená literatura
  • Altshiller-Court, N. College geometry: An introduction to the modern geometry of the triangle and the circle. New York: Barnes & Noble. 1952.
  • Gal, H., and Linchevski, L. To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74, 163?183. 2010.
  • Greenberg, M, J. Euclidean and non-Euclidean geometries: Development and history. New York: W. H. Freeman. 1993.
  • Koichu, B., and Berman, A. 3-D Dynamic Geometry: Ceva's Theorem in Space. International Journal of Computers for Mathematical Learning, 9(1),95-108. 2004.
  • Leikin, R. & Grossman, D. Teachers modify geometry problems: from proof to investigation. Educational Studies in Mathematics, 82(3), 515?531. 2013.
  • Oxman, V., Stupel, M. Illogical use of the converse of a theorem that can cause an incorrect solution. International Journal of Mathematical Education in Science and Technology, 53(6), 1449-1460. 2020.
  • Posamentier, A., & Salkind, C. T. Challenging problems in geometry (2nd Rev. ed.). New York: Dover Publications. 1996.
  • Sinitsky, I. The loci approach to solve construction problems in dynamic geometry environment. CADGME Abstract book, p.48. 2022.
  • Swafford, J. O., Jones, G. A., & Thornton, C. A. Increased knowledge in geometry and instructional practice. Journal for Research in Mathematics Education, 28(4), 467-483. 1997.
  • Yiu, P. Elegant geometric constructions. Department of Mathematical Sciences, Florida Atlantic University. 2005.


Studijní plány, ve kterých se předmět nachází
Fakulta Studijní plán (Verze) Kategorie studijního oboru/specializace Doporučený ročník Doporučený semestr