Information on study programme

« Back
Faculty Faculty of Science (FPR)
Study programme unspecified (B0541A170027)
Branch of study / Specialization unspecified (B0541A170027/0 - 2025)
Level of acquired qualification Bachelor
Form of study Full-time
Standard length of study 3 years
Number of ECTS credits 180
Qualification awarded Bachelor (0)
Access to further studies Master study programme  
Type of completion State Final Exam
Study and Examination Code URL
Faculty coordinator for international students
Okosy Barbora, Mgr.
Email: bokosy@prf.jcu.cz
Phone: 387776212
Fax:
Key learning outcomes unspecified
Specific admission requirements unspecified
Specific provisions for recognition of prior learning unspecified
Qualification requirements and regulations unspecified
Profile of the programme unspecified
Persistence requirements unspecified
Occupational profiles of graduates with examples unspecified
Branch of study / Specialization guarantor Berec Luděk, doc. Ing. Dr.

Segment composition (blocks and Courses within):

Abbreviation
FBB AplMat_25
Name of segment
Aplikovaná matematika_25
Name of block
unspecified
Status
Compulsory
Min. credits
8
Max. ECTS credits
-
Min. number of courses
4
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
FPR/003 Basic Rules of Study at the USB 0 Zp 0+8S+0 1 Winter  
FPR/007 Guidelines for Information Resources 0 Zp 8S+0+0 1 Winter  
OJZ/910 Bachelor´s English Examination 8 Zk 0+0+0 3 Winter  
OJZ/900 Progress Examination in English 0 Zk 0+0+0 - Summer  
Name of block
unspecified
Status
Compulsory
Min. credits
93
Max. ECTS credits
-
Min. number of courses
25
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
FPR/914 Courses Evaluation 0 Zp 0+0+0 1 Winter  
UFY/448 Modelling in Matlab 3 Zk+ 1+1+0 1 Winter  
UMB/750 Discrete Mathematics 3 Zk+ 1+1+0 1 Winter  
UMB/551 Linear Algebra 3 Zk+ 1+1+0 1 Winter  
UMB/564 Calculus I 6 Zk+ 2+2+0 1 Winter  
UMB/583 Introduction to mathematical logic 3 Zk+ 1+1+0 1 Winter  
UAI/760 DTP-LaTeX 3 Zp 0+0+2 1 Winter  
UMB/738 Probability and mathem statistics for AM 5 Zk+ 1+2+0 1 Summer  
UMB/565 Calculus II 8 Zk+ 3+2+0 1 Summer  
UMB/574 Numerical mathematics I 3 Zk+ 1+1+0 1 Summer  
UMB/585 Linear Algebra II 6 Zk+ 2+2+0 1 Summer  
FPR/914 Courses Evaluation 0 Zp 0+0+0 1 Summer  
UMB/578 Introduction to Complex Analysis 5 Zk+ 2+1+0 2 Winter  
UMB/567 Algebra 6 Zk+ 2+2+0 2 Winter  
UMB/566 Calculus III 8 Zk+ 3+2+0 2 Winter  
FPR/914 Courses Evaluation 0 Zp 0+0+0 2 Winter  
UMB/587 Introduction to Differential Equations 6 Zk+ 2+2+0 2 Summer  
FPR/914 Courses Evaluation 0 Zp 0+0+0 2 Summer  
UMB/575 Numerical Mathematics II 5 Zk+ 2+1+0 2 Summer  
UMB/572 Mathematical analysis IV 5 Zk+ 2+1+0 2 Summer  
UMB/580 Introduction to Functional Analysis 5 Zk+ 3+0+0 3 Winter  
UMB/581 Differential Equations 5 Zk+ 2+1+0 3 Winter  
FPR/914 Courses Evaluation 0 Zp 0+0+0 3 Winter  
FPR/914 Courses Evaluation 0 Zp 0+0+0 3 Summer  
UMB/570 Qualit. methods of anal. of non-linear s 5 Zk 2+1+0 3 Summer  
Name of block
unspecified
Status
Compulsory
Min. credits
0
Max. ECTS credits
-
Min. number of courses
3
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
UMB/S3 Mathematical analysis 0 Szv 0+0+0 - -  
UMB/S5 Applied Mathematics 0 Szv 0+0+0 - -  
UMB/S4 Differential Equations 0 Szv 0+0+0 - -  
Name of block
unspecified
Status
Compulsory
Min. credits
16
Max. ECTS credits
-
Min. number of courses
2
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
UMB/890 Bachelor Thesis, Practical Part 8 Zp 0+8+0 3 Winter  
UMB/891 Bachelor Thesis, Practical Part 8 Zp 0+8+0 3 Summer  
Name of block
unspecified
Status
Compulsory option
Min. credits
20
Max. ECTS credits
-
Min. number of courses
-
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
UMB/018 Adv. meth. of math. modelling 3 Zk 28S+0+0 2 Winter  
UMB/017 Mathematical economy 3 Zk 28S+0+0 2 Summer  
UMB/012 Applications of Mathematics I 3 Zk 2+0+0 2 Summer  
UMB/751 Applied partial differential equations 2 Zk+ 28S+0+0 3 Winter  
UMB/015 Mathematical biology I. 3 Zk 28S+0+0 3 Winter  
UAI/304 Computational Intelligence 4 Zk 28S+0+0 3 Summer  
UMB/016 Mathematical Modelling for Life Sciences 3 Zk 28S+0+0 3 Summer  
UAI/722 Modeling and Simulation 6 Zk 2+2+0 - Winter  
Name of block
unspecified
Status
Compulsory option
Min. credits
22
Max. ECTS credits
-
Min. number of courses
-
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
UMB/019 - 5 Zk 14S+28S+0 - -  
KBO/012 Biostatistics 7 Zk+ 2+2+0 - Winter  
UAI/324 Introduction to Python 5 Zk+ 28S+28S+0 - Winter  
UAI/509 Algorthms 6 Zk+ 28S+28S+0 - Winter  
UFY/451 General Physics I. 5 Zk+ 3+1+0 - Winter  
KBE/050 Introduction to modern regression method 7 Zk+ 2+2+0 - Winter  
UAI/332 Adaptive Algorithms and Appliccations 6 Zk+ 2+2+0 - Summer  
UFY/457 Computational Physics-Particle Modeling 4 Zk+ 2+1+0 - Summer  
UMB/584 Geometry I. 6 Zk+ 2+2+0 - Summer  
Name of block
unspecified
Status
Compulsory option
Min. credits
4
Max. ECTS credits
-
Min. number of courses
-
Course code Course title credits Completion Time requirements Recommended year of study Recommended semester Course availability
OJZ/110 English 1 2 Zp 0+2+0 - - The course is available to visiting students
OJZ/210 English NS 1 2 Zp 0+2+0 - - The course is available to visiting students
OJZ/100 Bachelor English for Beginners 2 Zp 0+2+0 - -  
OJZ/230 English NS III. 2 Zp 0+2+0 - - The course is available to visiting students
OJZ/120 English II. 2 Zp 0+2+0 - - The course is available to visiting students
OJZ/130 English III. 2 Zp 0+2+0 - - The course is available to visiting students
OJZ/220 English NS II. 2 Zp 0+2+0 - - The course is available to visiting students
OJZ/101 Bachelor English for Beginners 2 Zp 0+2+0 - -